Sample Moduli for Set-Indexed Gaussian Processes

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rates of Growth and Sample Moduli for Weighted Empirical Processes Indexed by Sets

Probability inequalities are. obtained for the supremum of a weighted empirical process indexed. by a Vapnik-Cervonenkis class C of sets. These inequalities are particularly useful under the assumption P(ufC E: C : P(C) < t D -? 0 as t -? o. They are used to obtain almost sure bounds on the rate of growth of the process as the sample size approaches infinity, to find an asymptotic sample modulu...

متن کامل

A Markov Property For Set-Indexed Processes

We consider a type of Markov property for set-indexed processes which is satisfied by all processes with independent increments and which allows us to introduce a transition system theory leading to the construction of the process. A set-indexed generator is defined such that it completely characterizes the distribution of the process.

متن کامل

The Rate of Entropy for Gaussian Processes

In this paper, we show that in order to obtain the Tsallis entropy rate for stochastic processes, we can use the limit of conditional entropy, as it was done for the case of Shannon and Renyi entropy rates. Using that we can obtain Tsallis entropy rate for stationary Gaussian processes. Finally, we derive the relation between Renyi, Shannon and Tsallis entropy rates for stationary Gaussian proc...

متن کامل

CLT for L moduli of continuity of Gaussian processes

Let G = {G(x), x ∈ R1} be a mean zero Gaussian processes with stationary increments and set σ2(|x − y|) = E(G(x) − G(y))2. Let f be a symmetric function with Ef(η) < ∞, where η = N(0, 1). When σ2(s) is concave or when σ2(s) = sr, 1 < r ≤ 3/2 lim h↓0 ∫ b a f ( G(x+h)−G(x) σ(h) ) dx− (b− a)Ef(η) √ Φ(h, σ(h), f, a, b) law = N(0, 1) where Φ(h, σ(h), f, a, b) is the variance of the numerator. This r...

متن کامل

Sample Efficient Reinforcement Learning with Gaussian Processes

This paper derives sample complexity results for using Gaussian Processes (GPs) in both modelbased and model-free reinforcement learning (RL). We show that GPs are KWIK learnable, proving for the first time that a model-based RL approach using GPs, GP-Rmax, is sample efficient (PAC-MDP). However, we then show that previous approaches to model-free RL using GPs take an exponential number of step...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Annals of Probability

سال: 1986

ISSN: 0091-1798

DOI: 10.1214/aop/1176992533